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Abstract

This paper presents a study of the effect of model uncertainty on damage detection when feedback controllers, such as

passive controllers, are incorporated into the structure. The use of feedback control techniques can generate additional

modal parameters of closed-loop systems for structural damage identification. One major issue of the application of

feedback control techniques is the effect of model uncertainty, such as boundary condition variation, on structural damage

detection. The objective of this research is to develop control methodologies to reduce the effect of model uncertainty on

structural damage detection.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Reliable and efficient techniques for structural health monitoring of large structures, such as aircraft, are
essential to safe operation, cost reduction, and failure prevention. Currently, there are various structural
health monitoring technologies under development, including, for example, vibration-based methods [1–4],
ultrasonic guided wave-based methods [5], and electro mechanical impedance-based methods. The
conventional ultrasonic non-destructive evaluation methods have been applied in the engineering community
for many decades. However, ultrasonic inspection over large areas of thin-wall structures, such as airframes,
can be time-consuming and expensive to apply. On the other hand, vibration-based methods utilize the
structural dynamic responses that are globally sensitive to damage rather than localized conventional
techniques such as ultrasonic and eddy current methods.

Vibration-based methods use the changes of vibration characteristics for damage identification. In general,
vibration-based methods require the measurements of natural frequencies and mode shapes [1,3]. However,
mode shape measurements require a large number of sensors. One major issue and limitation of the frequency-
shift-based method, which requires only the measured natural frequencies, is that the number of reliable
identified natural frequencies is usually much smaller than the degrees of freedom required to accurately
identify the damage. To solve this problem, a virtual passive control technique for structural health
monitoring [4] was recently developed. This passive control technique uses only the existing real-time control
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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systems to alter natural frequencies and no additional physical elements are attached to the system. Another
limitation of the frequency-shift-based method is that the natural frequencies can be relatively insensitive to
some minor damage. The feedback control can be designed to enhance the sensitivity of natural frequencies to
structural damage [6], such as joint damage, for the improvement of damage identification.

When feedback control is applied to get additional data, the effect of model uncertainty and measurement
noise on the identified natural frequencies of the closed-loop system is crucial for successful damage
identification [7]. This paper presents an investigation of the effect of model uncertainty, boundary condition
variation, on natural frequency changes for the considered damage when feedback controllers are
incorporated into the structure. The study uses a correlation approach [3], which is based on the comparison
of the identified parameter change and the change of the analytical model due to damage. Only a small
number of sensors are required for the correlation approach for damage identification [8]. This transfer
function correlation approach has been successfully applied to damage identification of a flexible beam
experiment with only one sensor [9]. The previous study shows that the performance of structural health
monitoring is sensitive to the designed controller [8]. Methodologies of optimal control design are developed
to reduce the effect of model uncertainty on damage identification. The simulation based on the finite element
model of a cantilevered Euler’s beam is used to demonstrate the proposed approach.

2. Correlation approach

A brief description of correlation approach is given in this section. In this paper, the study is based on the
analysis of the natural frequencies of the closed-loop system. The natural frequency vector of the first n

structural modes of the closed-loop system is defined as

x ¼ ½o1 o2 � � � on �, (1)

where oj is the jth structural natural frequency of the closed-loop system. The changes of the natural
frequency vectors for the ith referred damage case, such as the stiffness loss of the ith element, are defined as

Dxi ¼ xi � x; i ¼ 1; . . . ;m, (2)

where xi are the natural frequency vectors of the ith referred damage case. The correlations between the tested
system with the weighted change vector, DxW, which represents the difference of the identified parameters
between the tested system and the healthy system, and the ith damage case with the weighted change vector
Dxi

W are defined as

Ci ¼
DxW ðDxi

W Þ
T

jDxW jjDxi
W j

, (3)

where the weight of each element is the standard deviation of the corresponding element due to all the
considered m damage cases [3]. The correlation Ci represents the cosine between two vectors. The value of the
correlation Ci is between �1 and 1. When the absolute value of Ci is close to 1, it indicates that the ith element
is a damage candidate [8].

3. Optimal control design

The changes of the natural frequencies due to structural damage vary as boundary condition changes.
The natural frequency of the first n structural modes of the closed-loop system can be expressed as

xðc; b; zÞ ¼ o1ðc; b; zÞ o2ðc; b; zÞ � � � onðc; b; zÞ
� �

, (4)

with

c ¼ c1 � � � cnc

� �
; b ¼ b1 � � � bnb

� �
; z ¼ z1 � � � zm

� �
, (5)

where oi(c,b,z) is the natural frequency of the ith structural modes of the closed-loop system with the designed
controller c, boundary condition variable vector b, and damage variable vector z. The problem of concern here
is to find an ‘‘optimal’’ controller that can minimize the changes of Dxj due to the boundary change from
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condition (1) to condition (2). For the considered m damage cases, the cost function can be defined as

J ¼
Xn

i¼1

Xm

j¼1

jDoj
iðc; b

ð2ÞÞ � Doj
iðc; b

ð1ÞÞj

si

, (6)

where Doi
j(c,b) is the change of the ith natural frequency due to the jth damage case, and si is the weight used

in correlation approach, the standard deviation of the ith natural frequency due to all the damaged cases for
the open-loop system. The problem is to find an optimal controller c to minimize the cost function J with
boundary condition vector changing from b(1) to b (2).
4. Discussion of results

The finite element model of a cantilevered aluminum Euler’s beam, as shown in Fig. 1, is used in the study.
For structural damage, we consider the stiffness loss of 15 elements with equal lengths from the fixed end to
the end of a spring with a varied spring constant kd (N/m), which represents the uncertain boundary condition.
The designed controller is an attached system with two degrees of freedom as shown in Fig. 1.

This passive controller has four designed variables, two masses and two springs. In the control design, these
variables are constrained in the specified ranges to limit physical conditions, for example the maximum of each
mass is lower than 20% of beam mass. The Matlab program fmins, which uses the Nelder–Mead simplex
(direct search) method, is applied to find a solution to minimize the cost function in Eq. (6). Fig. 2 shows the
natural frequencies of the first three modes as functions of spring constant (kdX5) for the open-loop system
without passive controller. The natural frequency of the first mode increases 1.9% as kd changes from 5 to 105;
the natural frequency of the second mode increases 7.48%; and the natural frequency of the third mode
increases 18.8%. The natural frequencies of these three modes have negligible variations as kd changes from
103 to 105. Fig. 3 shows the changes of natural frequencies of the first three structural modes due to 10%
stiffness loss of each element for five different kd cases, kd ¼ 5, 10, 20, 100, or 105. For all the damage cases, the
first mode natural frequency change has little variation as kd increases from 5 to 105. The second mode natural
frequency change has some variation, and the third mode natural frequency change for some damage cases is
significant as kd varies. In this example, there is only one boundary condition variable kd. For the open-loop
system without controller, the change of the ith natural frequency due to 10% stiffness loss of the jth element
is computed as Doi

j(kd), as a function of kd. For the closed-loop system with controller c, the change of the ith
natural frequency due to 10% stiffness loss of the jth element is computed as Doi

j(c, kd), as a function of c and
kd. For the comparison, a cost function for the open-loop system is defined as a function of kd

J0ðkdÞ ¼
Xn

i¼1

Xm

j¼1

jDoj
iðkdÞ � Doj

ið5Þj

si

. (7)
Fig. 1. Cantilevered Euler’s beam with an attached passive controller.
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Fig. 2. Natural frequencies of the first three modes as functions of kd: (a) 1st mode; (b) 2nd mode; and (c) 3rd mode.

Fig. 3. Natural frequency changes of the first three modes due to 10% stiffness loss of each element: (a) 1st mode; (b) 2nd mode; and (c)

3rd mode. o—kd ¼ 5; x—kd ¼ 10; +—kd ¼ 20; *—kd ¼ 100; and &—kd ¼ 105.
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The cost function of the closed-loop system with controller c is defined as

JcðkdÞ ¼
Xn

i¼1

Xm

j¼1

jDoj
iðc; kdÞ � Doj

iðc; 5Þj

si

. (8)

The optimal control problem is to find a controller to minimize this cost function. The ratio between the
cost function of the closed-loop system with the optimal controller and the cost function of the open-loop
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system is defined as

rðkd Þ ¼
Jcðkd Þ

J0ðkd Þ
. (9)

This ratio represents an index of performance improvement. For each of the 15 locations (15 elements) on
the beam, an optimal controller with two degrees of freedom, shown in Fig. 1, is designed. Table 1 shows the
results of four cases with optimal controllers at four different locations S. The cost function J0, which
represents an index of the change due to boundary condition variation, increases as kd increases, and it
changes little when kd varies from 103 to 105. The design with the optimal controller at location 12 gives the
best performance, and this controller reduces the effect due to boundary condition uncertainty to less than
35% of the uncertainty effect of the open-loop system for various kd cases. Fig. 4 shows the parameter change
Doi

j(c, kd) of the closed-loop system with the optimal controller at location 12. Fig. 5 shows the changes of
natural frequency due to kd uncertainty, Doi

j(105)–Doi
j(5) and Doi

j(c,105)–Doi
j(c,5), for both open-loop and

closed-loop systems where kd changes from 5 to 105. The change of kd has little effect on the natural frequency
of the first mode, and the controller has little influence on this mode. The natural frequency of the second
mode shows some changes due to the variation of kd, and the controller reduces the effect from boundary
condition variation. The uncertainty of kd has a significant effect on the natural frequency of the third mode,
and the optimal controller significantly reduces the effect of boundary condition uncertainty.
Table 1

Cost functions and ratios for various boundary condition kd (N/m)

kd ¼ 10 kd ¼ 20 kd ¼ 50 kd ¼ 100 kd ¼ 103 kd ¼ 105

J0(kd) 7.7219 12.2908 14.8168 15.5843 16.2378 16.3075

r(kd), S ¼ 1 0.6743 0.5781 0.5830 0.5796 0.5747 0.5741

r(kd), S ¼ 4 0.4727 0.4453 0.4388 0.4376 0.4369 0.4368

r(kd), S ¼ 7 0.5377 0.4470 0.4122 0.4039 0.3973 0.3966

r(kd), S ¼ 12 0.3495 0.3201 0.3140 0.3131 0.3127 0.3127

Fig. 4. Natural frequency changes of the first three structure modes of closed-loop system due to 10% stiffness: (a) 1st mode; (b) 2nd

mode; and (c) 3rd mode. o—kd ¼ 5; x—kd ¼ 10; +—kd ¼ 20; *—kd ¼ 100; and &—kd ¼ 105.
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Fig. 5. Natural frequency changes due to kd variation from 5 to 105: (a) 1st mode; (b) 2nd mode; and (c) 3rd mode. o—open-loop system;

and x—closed-loop system.
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Fig. 6. Correlation of element 7 damage case: (a) open-loop system; and (b) closed-loop system. —— kd ¼ 5; y kd ¼ 20; and - - kd ¼ 105.
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Next the results based on the correlation analysis are presented. The parameter changes Doi
j(c,5) of the

system with kd ¼ 5 are used as the referred ones for computing the correlation in Eq. (3). Figs. 6 and 7 show
the results of correlation for the element 7 damage case with various kd. For the element 7 damage case, the
optimal controller at location 12 significantly reduces the effect of kd variation on the natural frequency of the
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third mode, as shown in Fig. 5. Fig. 6 shows that the change of kd has a significant effect on the correlation of
the open-loop system, but it has little effect on the correlation of the closed-loop system with the optimal
controller. Fig. 7 shows the correlation C7 as a function of kd for the element 7 damage case. The correlation
C7 of the open-loop system drops to below 0.92 when kd is higher than 100, which indicates that element 7 is
not a damage candidate. The correlation C7 of the closed-loop system is always larger than 0.995, which
clearly identifies element 7 as a damage candidate.

5. Concluding remarks

This paper presents a study of the effect of boundary condition uncertainty on structural damage
detection when feedback controllers are incorporated into the structure. Methodologies are developed to
design optimal controllers to reduce the effect of boundary condition uncertainty on natural frequency
changes for the considered damage cases. A correlation approach is used to demonstrate that the damage
detection can be significantly improved with the use of the optimal controller methodology under boundary
condition uncertainty.
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